ALQUENOS
REACCIONES RADICALARIAS
Reacción de alcanos con halógenos
Los alcanos reaccionan con halógenos mediante mecanismos radicalarios. Dicha reacción supone la sustitución de uno o varios hidrógenos del alcano por halógenos.Mecanismo de la halogenación radicalaria El mecanismo de la halogenación radicalaria consta de tres etapas: iniciación, propagación y terminación. En la iniciación la molécula de halógeno rompe de forma homolítica generando radicales. En la etapa de propagación se produce la sustitución de hidrógenos del alcano por halógenos. Cuando los reactivos se agotan, los radicales que hay en el medio se unen entre si, produciéndose la etapa de teminación. Reactividad de los halógenos La primera etapa de propagación determina la velocidad de la reacción. Para el flúor esta etapa es de baja energía de activación lo que convierte al flúor en el halógeno mas reactivo. En el caso del yodo la energía de activación es muy elevada y la reacción no se produce. Orden de reactividad en reacciones radicalarias : F2>Cl2>Br2>I2 En resumen, el yodo no es reactivo en la halogenación radicalaria y el flúor reacciona de forma violenta. Polialogenaciones La reacción de halogenación es difícil de parar, puesto que el producto halogenado es más reactivo que el alcano de partida. Para evitar esté problema, llamado polihalogenaciones, se utiliza exceso del alcano. Estabilidad de radicales El mecanismo de estas reacciones transcurre con formación de un intermedio llamado radical cuya estabilidad depende del número de sustituyentes que rodean el carbono que contiene el electrón solitario. Los radicales formados en la etapa de propagación se estabilizan por hiperconjugación. El orden de estabilidad de los radicales viene dado por: terciarios > secundarios > primarios. CICLOALCANOS
Nomenclatura de cicloalcanos
Los cicloalcanos se nombran con el prefijo ciclo- seguido del nombre del alcano con igual número de carbonos. Los cicloalcanos presentan isomería cis/trans. Cuando los sustituyentes se encuentran por la misma cara de la molécula, se dice que están cis; cuando se encuentran por caras opuestas, se dice que están trans.Propiedades físicas Presentan mayores puntos de fusión y ebullición que los correspondientes alcanos de igual número de carbonos. La rigidez del anillo permite un mayor número de interacciones intermoleculares, que es necesario romper mediate la aportación de energía, para pasar las moléculas a fase gas. Tensión anular Los cicloalcanos de pequeño tamaño (ciclopropano, ciclobutano) presentan una tensión importante debida a los ángulos de enlace y a los eclipsamientos. Los cicloalcanos de mayor tamaño como ciclopentano y ciclohexano están casi libres de tensión. Isómeros conformacionales en el ciclohexano El ciclohexano se dispone en forma de silla para evitar los eclipsamientos entre hidrógenos. La forma de silla del ciclohexano contiene dos tipos de hidrógenos; los axiales que se sitúan perpendiculares al plano de la molécula y los ecuatoriales colocados en el mimo plano. Equilibrio ecuatorial-axial en ciclohexanos sustituidos El ciclohexano presenta un equilibrio conformacional que interconvierte los hidrógenos ecuatoriales en axiales y viceversa. Cuando un ciclohexano está sustituido la conformación que más grupos sitúa en posición ecuatorial es la más estable, encontrándose el equilibrio conformacional desplazado hacia dicha conformación. ALQUENOSNomenclatura de alquenos
La IUPAC nombra los alquenos cambiando la terminación -ano del alcano por -eno. Se elige como cadena principal la más larga que contenga el doble enlace y se numera para que tome el localizador más bajo.
Estructura del doble enlaceLos alquenos presentan isomería cis/trans. En alquenos tri y tetrasustituidos se utiliza la notación Z/E. Los alquenos son planos con carbonos de hibridación sp2. El doble enlace está formado por un enlace σ que se consigue por solapamiento de híbridos sp2 y un enlace π que se logra por solapamiento del par de orbitales p perpendiculares al plano de la molécula. Estabilidad del doble enlace Los dobles enlaces se estabilizan por hiperconjugación, de modo que un alqueno es tanto más estable cuantos más sustituyentes partan de los carbonos sp2. Síntesis de alquenos Los alquenos se obtienen mediante reacciones de eliminación a partir de haloalcanos y mediante deshidratación de alcoholes. Reacciones de alquenos Los alquenos adicionan gran variedad de reactivos al doble enlace. Así, reaccionan con los ácidos de los halógenos, agua en medio ácido, MCPBA..... Energía de enlace Energéticamente, el doble enlace se forma mediante la edición de dos tipos de enlace, el σ y el π. La energía de dichos enlaces se obtiene a partir del cálculo del solapamiento de los dos orbitales constituyentes, y en este caso el solapamiento de los orbitales sp2 es mucho mayor que los orbitales p (el primero crea el enlace σ y el segundo el π) y por tanto la componente σ es bastante más energética que la π. La razón de ello es que la densidad de los electrones en el enlace π están más alejados del núcleo del átomo. Sin embargo, a pesar de que el enlace π es más débil que el σ, la combinación de ambos hace que un doble enlace sea más fuerte que un enlace simple. El que el doble enlace sea rígido (en contraposición al enlace simple, formado por un solo enlace σ, que puede rotar libremente a lo largo de su eje) se debe a la presencia de los orbitales π, así, para que exista una rotación, es necesario romper los enlaces π y volver a formarlos. La energía necesaria para romper estos enlaces no es demasiado elevada, del orden de los 65 kcal·mol-1, lo cual corresponde a temperaturas de entre 400 y 500 °C. Esto significa que por debajo de estas temperaturas los dobles enlaces permanecen rígidos y, por lo tanto, la molécula es configuracionalmente estable, pero por encima el enlace π puede romperse y volverse a formar y aparece una rotación libre. Propiedades físicas La presencia del doble enlace modifica ligeramente las propiedades físicas de los alquenos frente a los alcanos. De ellas, la temperatura de ebullición es la que menos se modifica. La presencia del doble enlace se nota más en aspectos como la polaridad y la acidez. PolaridadDependiendo de la estructura, puede aparecer un momento dipolar débil.El enlace alquilo-alquenilo está polarizado en la dirección del átomo con orbital sp2, ya que la componente s de un orbital sp2 es mayor que en un sp3 (esto podría interpretarse como la proporción de s a p en la molécula, siendo 1:2 en sp2 y 1:3 en sp3, aunque dicha idea es simplemente intuitiva). Esto es debido a que los electrones situados en orbitales híbridos con mayor componente s están más ligados al núcleo que los p, por tanto el orbital sp2 es ligeramente atrayente de electrones y aparece una polarización neta hacia él. Una vez que tenemos polaridad en el enlace neta, la geometría de la molécula debe permitir que aparezca un momento dipolar neto en la molécula, como se aprecia en la figura inferior.![]() 'La primera molécula' es cis y tenemos un momento dipolar neto, pero la segunda trans, pese a tener dos enlaces ligeramente polarizados el momento dipolar neto es nulo al anularse ambos momentos dipolares. Reacciones Los alquenos son más reactivos que los alcanos. Sus reacciones características son las de adición de otras moléculas, como haluros de hidrógeno, hidrógeno y halógenos. También sufren reacciones de polimerización, muy importantes industrialmente.
Polimerización: Forman polímeros del modo n CH2=CH2 → (-CH2-CH2-)n polímero, (polietileno en este caso). Bibliografia
Carey, F. A.: Química Orgánica. Ed. McGraw-Hill, 1999
Fessenden, R.J. y Fessenden, S.J., 1993. Química Orgánica. Grupo Editorial Iberoamérica, México. |
McMurry, J., 2001. Química Orgánica. 5a. edición. Internacional Thomson Editores, México.






+ Energía 












